Uperieure S Ormale N Ecole Stability of Blow-up Proole for Equation of the Type Stability of Blow-up Proole for Equation of the Type

نویسندگان

  • Frank MERLE
  • Hatem ZAAG
  • Frank Merle
  • Hatem Zaag
چکیده

Stability of blow-up proole for equation of the type u t = u + juj p?1 u Abstract In this paper, we consider the following nonlinear equation u t = u + juj p?1 u u(:; 0) = u 0 ; (and various extensions of this equation, where the maximum principle do not apply). We rst describe precisely the behavior of a blow-up solution near blow-up time and point. We then show a stability result on this behavior .

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Finite time blow up of solutions of the Kirchhoff-type equation with variable exponents

In this work, we investigate the following Kirchhoff-type equation with variable exponent nonlinearities u_{tt}-M(‖∇u‖²)△u+|u_{t}|^{p(x)-2}u_{t}=|u|^{q(x)-2}u. We proved the blow up of solutions in finite time by using modified energy functional method.

متن کامل

Existence and blow-up of solution of Cauchy problem for the sixth order damped Boussinesq equation

‎In this paper‎, ‎we consider the existence and uniqueness of the global solution for the sixth-order damped Boussinesq equation‎. ‎Moreover‎, ‎the finite-time blow-up of the solution for the equation is investigated by the concavity method‎.

متن کامل

BLOW-UP AND NONGLOBAL SOLUTION FOR A FAMILY OF NONLINEAR HIGHER-ORDER EVOLUTION PROBLEM

In this paper we consider a kind of higher-order evolution equation as^{kt^{k} + ^{k&minus1}u/t^{k&minus1} +• • •+ut &minus{delta}u= f (u, {delta}u,x). For this equation, we investigate nonglobal solution, blow-up in finite time and instantaneous blow-up under some assumption on k, f and initial data. In this paper we employ the Test function method, the eneralized convexity method an...

متن کامل

Global existence‎, ‎stability results and compact invariant sets‎ ‎for a quasilinear nonlocal wave equation on $mathbb{R}^{N}$

We discuss the asymptotic behaviour of solutions for the nonlocal quasilinear hyperbolic problem of Kirchhoff Type [ u_{tt}-phi (x)||nabla u(t)||^{2}Delta u+delta u_{t}=|u|^{a}u,, x in mathbb{R}^{N} ,,tgeq 0;,]with initial conditions $u(x,0) = u_0 (x)$ and $u_t(x,0) = u_1 (x)$, in the case where $N geq 3, ; delta geq 0$ and $(phi (x))^{-1} =g (x)$  is a positive function lying in $L^{N/2}(mathb...

متن کامل

Uperieure S Ormale N Ecole Morrey-campanato Estimates for Helmholtz Equation Morrey-campanato Estimates for Helmholtz Equation Morrey-campanato Estimates for Helmholtz Equation

We derive uniform weighted L 2 and Morrey-Campanato type estimates for Helmholtz Equations in a medium with a variable index which is not necessarily constant at innnity. Our technique is based on a multiplier method with appropriate weights which generalize those of Morawetz for the wave equation. We also extend our method to the wave equation.

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 1995